A Bayesian Approach to Diagnostics for Multivariate Control Charts

Fall Technical Conference
Philadelphia, PA
October 2017

Steven E. Rigdon
Department of Biostatistics
Saint Louis University

Robert Steward
National Geospatial-Intelligence Agency
Saint Louis, MO

Rong Pan
School of Computing, Informatics and Decision Systems Engineering
Arizona State University
Outline

• Motivating example
• MCMC Overview
• Reversible Jump MCMC Overview
• RJMCMC for Multivariate Change Point Problem
Multivariate Process Control

- Problem motivated by statistical process control (SPC)
- Multiple \((p) \) quality characteristics are measured on each item
- Goal: Simultaneously monitor all measured quality characteristics.
- Use a multivariate control chart (e.g. Hotelling’s \(T^2 \) chart, or multivariate exponentially weighted moving average, or ...)

3
Diagnostics for Multivariate Control Chart

Model: $X_1, X_2, ..., X_\tau \sim N(\mu_\tau, \Sigma), \quad X_{\tau+1}, X_{\tau+2}, ..., X_N \sim N(\mu_{\tau+1}, \Sigma)$

If the multivariate chart signals a change (point above upper control limit on control chart), then the questions arise

1. When did the change occur?
2. Which among the p components changed?
3. For those components that shifted, what are the new values for the mean?
Example (Simulated) to Illustrate the Problem

• $p = 6$

• Mean vector before the shift: $\mu_\tau = (0,0,0,0,0,0)$.

• Covariance matrix: 1’s on diagonal, 0.3’s on off-diagonal

• First 79 data points in control.

• At time 80, process mean shifts to $\mu_{\tau+1} = (0,0,0,0.75,2.00)$.

• Monitor process using Hotelling T^2.
Figure: A T^2 control chart applied to simulated data. A change-point to the mean vector occurs at time point 80 and the control chart signals an alarm at the 99% confidence level (UCL=16.8) at time point 91.
Figure: A T^2 control chart applied to simulated data. A change-point to the mean vector occurs at time point 80 and the control chart signals an alarm at the 99% confidence level (UCL=16.8) at time point 91.
Now ... diagnostics. Which components shifted?

• There are $2^6 = 64$ possible models

 M_1: No change

 M_2: Component 1 mean changes

 M_3: Component 2 mean changes

 M_{22}: Components 5 and 6 mean changes

 M_{64}: All component means change
Now ... diagnostics. Which components shifted?

- There are $2^6 = 64$ possible models
 - M_1: No change
 - M_2: Component 1 mean changes
 - M_3: Component 2 mean changes
 - M_{22}: Components 5 and 6 mean changes **TRUE MODEL**
 - M_{64}: All component means change
Posterior Probability for Change Point τ
Posterior Probability for Change Point τ

Histogram of Posterior Probabilities

- **Model 22:** Components 5 and 6. Post. Prob. = 0.45
- **Model 7:** Component 6. Post. Prob. = 0.17
Posterior Probability for τ
Posterior Probability for τ

Posterior Mode is $\tau = 80$
Joint Posterior of Model and Change Point (with jitter)
Estimate of Means after Change

<table>
<thead>
<tr>
<th>Component</th>
<th>Post-change mean estimate</th>
<th>95% credible interval</th>
<th>True value</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.71</td>
<td>(0.65,0.91)</td>
<td>0.75</td>
</tr>
<tr>
<td>6</td>
<td>1.96</td>
<td>(1.73,2.10)</td>
<td>2.00</td>
</tr>
</tbody>
</table>
Reversible Jump Markov Chain Monte Carlo (RJMC)

- Often used for model selection
- Used when parameter space for models has varying dimension
Overview of MCMC (Metropolis-Hastings)

• X has pdf $f(x|\theta)$, θ has prior $p(\theta)$

• To simulate from the posterior $p(\theta|x)$

1. Start with $\theta^{(0)}$. Set $k = 1$
2. Simulate a proposal θ^* from proposal distribution $g()$
3. Accept the move to proposal with probability
 $$\alpha = \min\left(1, \frac{g(\theta^*)p(x|\theta^*)}{g(\theta^{(k-1)})p(x|\theta^{(k-1)})}\right)$$
4. $\theta^{(k)} = \theta^*$ w/prob α, and $\theta^{(k)} = \theta^{(k-1)}$ w/prob $1 - \alpha$
5. Repeat Steps 2-4 creating a sequence $\theta^{(0)}, \theta^{(1)}, \theta^{(2)}, ...$
Overview of MCMC (Metropolis-Hastings)

• X has pdf $f(x|\theta)$, θ has prior $p(\theta)$

• To simulate from the posterior $p(\theta|x)$
 1. Start with $\theta^{(0)}$. Set $k = 1$
 2. Simulate a proposal θ^* from proposal distribution $g()$
 3. Accept the move to proposal with probability
 \[
 \alpha = \min \left(1, \frac{g(\theta^*)p(x|\theta^*)}{g(\theta^{(k-1)})p(x|\theta^{(k-1)})} \right)
 \]
 4. $\theta^{(k)} = \theta^*$ w/ prob α, and $\theta^{(k)} = \theta^{(k-1)}$ w/ prob $1 - \alpha$
 5. Repeat Steps 2-4 creating a sequence $\theta^{(0)}, \theta^{(1)}, \theta^{(2)}, ...$

THEOREM
The steady state distribution of the sequence $\theta^{(0)}, \theta^{(1)}, \theta^{(2)}, ...$ is the posterior distribution $p(\theta|x)$.
Example of MCMC in 1-dim Change Point Problem

\[X_1, X_2, \ldots, X_\tau \sim N(0,1) \]
\[X_{\tau+1}, X_{\tau+2}, \ldots, X_N \sim N(\mu, 1) \]

Simulated data with \(\tau = 40 \) and \(\mu = 1 \)

Priors: \(\tau \sim DU(1, N) \)
\(\mu \sim N(0, \text{large var.}) \)
Dimensions Vary in Multivariate Case

• Suppose \(p = 2 \). IC mean \(\mu_0 = [0, 0]' \). IC covariance \(\Sigma = I \).

• Possible Models
 1. No change. Parameters: none
 2. Only component 1 shifts. New mean is \(\mu_1 = [\mu_{21}, 0]' \)
 Parameters: \(\tau_2, \mu_{21} \)
 3. Only component 2 shifts. New mean is \(\mu_1 = [0, \mu_{32}]' \)
 Parameters: \(\tau_3, \mu_{32} \)
 4. Both components shift. New mean is \(\mu_1 = [\mu_{41}, \mu_{42}]' \)
 Parameters: \(\tau_4, \mu_{41}, \mu_{42} \)
Dimensions Vary in Multivariate Case

• Suppose $p = 2$. IC mean $\mu_0 = [0,0]'$. IC covariance $\Sigma = I$.

• Possible Models

 1. No change. Parameters: none

 2. Only component 1 shifts. New mean is $\mu_1 = [\mu_{21}, 0]'$
 Parameters: τ_2, μ_{21}

 3. Only component 2 shifts. New mean is $\mu_1 = [0, \mu_{32}]'$
 Parameters: τ_3, μ_{32}

 4. Both components shift. New mean is $\mu_1 = [\mu_{41}, \mu_{42}]'$
 Parameters: $\tau_4, \mu_{41}, \mu_{42}$
Dimensions of Parameter Space Vary

• The number of unknown parameters varies, depending on the model.

• “The number of things you don’t know is one of the things you don’t know.” (Hastie, 1995)

Overview of Reversible Jump MCMC

• Consider models $M_k, k = 1, 2, \ldots, L$.

• Model M_k has parameter θ_k.

• The model specific posterior distribution is

$$
\pi_k(\theta_k | D, M_k) = \frac{p_0(\theta_k | M_k) L(D | \theta_k, M_k)}{p_k(D | M_k)}
$$
Treat the model as an additional parameter.

• Treat the model M_k as an additional parameter.

• S_k denotes parameter space for M_k

• $S = \bigcup_{k=1}^{L} \{M_k\} \times S_k$

• Goal: Sample from S in an MCMC fashion to produce a chain that converges to the posterior distribution

$$
\pi(M_k, \theta_k | D) \propto p_0(M_k)p_0(\theta_k | M_k)L(D | M_k, \theta_k)
$$
Overview of RJMCMC

• Propose move from model M_k with parameter x to model $M_{k'}$ with parameter x'

• Chain must be aperiodic and irreducible, and the detailed balance equation must be satisfied:

$$\pi(x)j(M_k|M_{k'})g(u)\alpha(x, x') = \pi(x')j(M_{k'}|M_k)g'(u')\alpha(x', x) \left| \frac{\partial (x', u')}{\partial (x, u)} \right|$$

u is a “padding” variable that accounts for the difference in dimension between proposed models.
Acceptance Probability Is

\[\alpha(x, x') = \min \left(1, \frac{\pi(x') j(M_{k'}, M_k) g'(u')}{\pi(x) j(M_k | M_{k'}) g(u)} \right) \]

Dimension Matching

\[n_k = \text{dimension of } x \]
\[r_k = \text{dimension of } u \]
\[n'_k = \text{dimension of } x' \]
\[r'_k = \text{dimension of } u' \]

\[n_k + r_k = n'_k + r'_k \]
RJMCMC Algorithm (Sketch)

1. Choose initial conditions (state) \(x_0 = (M_{k_0}, \mu_{k_0}, \tau_{k_0}) \)

2. Within-model MH update of \((\mu_{k_0}, \tau_{k_0})\)

3. Propose jump to model \(M_{k'} \) with PMF \(j(M_{k'}, \middle| M_k) \)

4. If jumping to a model with more parameters, simulate \(u \)

5. Accept move to \(x'_0 = (M_{k_0}, \mu_{k_0}, \tau_{k_0}) \) with probability \(\alpha(x_0, x'_0) \)

6. Repeat steps 2 – 5 until MC convergence. Then run additional simulations to explore posterior.
Possible implementation of RJMCMC

• Within-model MH (standard stuff)

• $\tau \sim \text{DU}(\text{centered at current } \tau)$

• Model DU on all models that add one component or remove one component.

 Example: $p = 4, M = \{1,4\}$:

 Possible proposed models: $\{1,2,4\}, \{1,3,4\}, \{1\}, \{4\}$
Smaller model to larger model ...

- Suppose we are in state $M = \{1\}$ and we propose to move to model $\{1,4\}$.

Current state (within model 2, $\{1\}$) \[
\tilde{\theta}_k = [\mu_{2,\tau+1}, \tau]
\]

maps to (within model 8, $\{1,4\}$) \[
\tilde{\theta}_{k'} = [\mu_{8,\tau+1}, \mu_{8,\tau+1}, \tau]
\]
Suppose we are in state $M = \{1\}$ and we propose to move to model $\{1,4\}$.

Current state (within model 2, $\{1\}$) \[\tilde{\theta}_k = [\mu_{2,\tau+1}, \tau] \]

maps to (within model 8, $\{1,4\}$) \[\tilde{\theta}_{k'} = [\mu_{8,\tau+1}, \mu_{8,\tau+1}, \mu_{4,\tau+1}, \tau] \]
Smaller model to larger model ...

- Suppose we are in state $M = \{1\}$ and we propose to move to model $\{1, 4\}$.

$$u \sim N (\text{last visit}, \sigma_u^2)$$

Current state (within model 2, $\{1\}$)

$$\tilde{\theta}_k = [\mu_{2, \tau+1}^1, u, \tau]$$

maps to (within model 8, $\{1, 4\}$)

$$\tilde{\theta}_{k'} = [\mu_{8, \tau+1}^1, \mu_{8, \tau+1}^4, \tau]$$
Larger model to smaller model ...

• Suppose we are in state $M = \{1, 4\}$ and we propose to move to model $\{1\}$.

Current state (within model 8, $\{1, 4\}$)
\[
\tilde{\theta}_k = \begin{bmatrix}
\mu_{8,\tau+1},^{1} \mu_{8,\tau+1},^{4} \tau
\end{bmatrix}
\]

maps to (within model 2, $\{1\}$)
\[
\tilde{\theta}_{kr} = \begin{bmatrix}
\mu_{2,\tau+1},^{1} u, \tau
\end{bmatrix}
\]
Model

Possible Assumptions

\[X_1, X_2, \ldots, X_\tau \sim N(\mu_\tau, \Sigma) \]
\[X_{\tau+1}, X_{\tau+2}, \ldots, X_N \sim N(\mu_{\tau+1}, \Sigma) \]

1. known: \(\mu_\tau, \Sigma \)
 unknown: \(\tau, \mu_{\tau+1} \)
 (unrealistic, but easy to explain)

2. known: \(\Sigma \)
 unknown: \(\tau, \mu_\tau, \mu_{\tau+1} \)
 (stepping stone)

3. known: nothing
 unknown: \(\tau, \mu_\tau, \mu_{\tau+1}, \Sigma \)
 (realistic, but messy)
Summary

• Motivated by multivariate SPC

• Single model to address

 When did the change occur?
 Which components changed?
 What are the new means?

• Extensions to multiple change points by (even messier) MCMC

Binary Segmentation
But ... SPC is often looking only for single change