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Introduction and notation

Objective of change point estimation: identifying changes in
processes observed over given time interval
Simplest change point setting:

I data observed over T time points
I K + 1 processes: (0), (1), . . . , (K )
I K change points at times t1, t2, . . . , tK
I dataset

Y (0)
1 ,Y (0)

2 , . . . ,Y (0)
t1−1,Y

(1)
t1 ,Y (1)

t1+1, . . . ,Y
(K−1)
tK−1 ,Y (K )

tK ,Y (K )
tK+1, . . . ,Y

(K )
T
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Motivation

The majority of methods
I focus of univariate settings
I assume processes following normal distribution

F or p-variate normal distribution in multivariate setting
I assume independence of observations observed over time
I focus on single subject

F or assume independence of subjects in multisubject studies

We aim at developing procedures that
I relax distributional assumptions (robust to deviations from

normality)
I are capable to handle multivariate processes
I take into account dependence among observations
I take into account dependence among variables
I take into account dependence among subjects in multisubject

studies
I model joint covariance structure for variables, subjects, and

observations
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Matrix normal distribution

Consider a generalization of p-variate normal to p × T matrix
normal distribution (see, e.g., Gupta and Nagar (2000)) with pdf

φp×T (Y ;M ,Σ,Ψ) = (2π)−
pT
2 |Σ|−

T
2 |Ψ|−

p
2

× exp
{
−1

2
tr
{
Σ−1(Y −M)Ψ−1(Y −M)>

}}
I Y is p × T matrix of data
I M is p × T mean matrix
I Σp×p and ΨT×T are covariance matrices associated with rows and

columns, respectively
I tr{·} represents the trace operator

Matrix normal distribution is effective in modeling variability
associated with rows and columns
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Matrix normal distribution

It can be shown that vec(Y ) ∼ φpT (vec(M),Ψ⊗Σ)
I i.e., rows and columns are not assumed independent

Taking into account matrix structure of data allows reducing the
number of parameters associated with covariances from
pT (pT + 1)/2 to T (T + 1)/2 + p(p + 1)/2
Note that Ψ⊗Σ = aΨ⊗ a−1Σ, for any a ∈ (0,∞)

I to avoid non-identifiability, a constraint should be employed
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Dealing with deviations from normality

Data are often skewed – normality assumption is violated
Possible remedies include

I tranforming data to near-normality
(e.g., Box-Cox power or Manly exponential transformations)

I employing more appropriate models
(e.g., skew-normal, log-normal, gamma, etc.)

Manly transformation (1986) has several advantages over
Box-Cox

I not restricted to positive numbers
I flexible for modeling left and right skewness
I M(y ;λ) = λ−1(exp (λy)− 1)I(λ 6= 0) + yI(λ = 0)

F y : original observation
F M(·;λ): transformation operator with parameter λ
F I(A): indicator function that returns 1 if A is true and yields 0

otherwise
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Multivariate Manly transformation

For p-variate vector y , it is commonly assumed that
coordinatewise transformation leads to joint near-normality
(e.g., Andrews et al (1971), Velilla (1993))

I M(y ;λ) = (M(y1;λ1),M(y2;λ2), . . . ,M(yp;λp))
> ∼ Normal(µ,Σ)

F y = (y1, y2, . . . , yp)
>

F λ = (λ1, λ2, . . . , λp)
>

This transformation idea can be generalized to matrices
I M(Y ,Λ) ∼ MatrixNormal(M ,Σ,Ψ)
I specific form of Λ depends on the problem

F if rows represent p variables and columns correspond to T times,
each variable can have its own skewness parameter, i.e., Λ = λp1>T

F if rows represent N subjects and columns correspond to T times,
common parameter λ need to be applied to all rows, i.e., Λ = λ1N1>T

Yana Melnykov (University of Alabama) October 5, 2017 8 / 33



Multivariate processes

p variables, T times
Log-likelihood function:

logL(Y ;M ,Σ,Ψ,λ) = −pT
2

log(2π)− T
2

log |Σ| − p
2

log |Ψ|

− 1
2

tr
{
Σ−1(M(Y ;λ)−M)Ψ−1(M(Y ;λ)−M)>

}
+ λ>Y 1T

I λ>Y 1T is the log of Jacobian corresponding to transformation

Yana Melnykov (University of Alabama) October 5, 2017 9 / 33



Modeling mean matrix

Note that mean matrix M has pT parameters
In case of K shift change points

M =
(
µ0,µ0, . . . ,µ0,µ1︸ ︷︷ ︸

t1

,µ1 . . . ,µ1,µ2︸ ︷︷ ︸
t2−t1

, . . . ,

µK−1, . . . ,µK−1,µK︸ ︷︷ ︸
tK−tK−1

,µK , . . . ,µK︸ ︷︷ ︸
T−tK

)
=

K∑
k=0

µkm>k

I mk is vector of 0’s and 1’s, with 1’s in positions corresponding to the
k th process
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Modeling covariance matrices

Choice of Ψ depends on specific problem
Matrix Ψ corresponding to AR1 process is given by

Ψ =
δ2

1− φ2 Rφ with Rφ =


1 φ φ2 . . . φT−1

φ 1 φ . . . φT−2

...
...

...
. . .

...
φT−1 φT−2 φT−3 . . . 1


I δ2 and φ are corresponding variance and AR1 parameters
I Rφ represents the correlation matrix associated with AR1

Recall non-identifiability issue due to aΨ⊗ a−1Σ = Ψ⊗Σ

One convenient constraint in the considered setting is δ2 = 1− φ2

I Ψ reduces to correlation matrix Rφ
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Modeling covariance matrices

It can be shown that

|Ψ| = |Rφ| = (1− φ2)T−1

Ψ−1 = R−1
φ =

1
1− φ2 (IT − φJ1 + φ2J2)

J1 =


0 1 0 . . . 0 0
1 0 1 . . . 0 0
0 1 0 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . 0 1
0 0 0 . . . 1 0

 J2 =


0 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . 1 0
0 0 0 . . . 0 0


This helps completely avoid inverting potentially high-dimensional
T × T matrix Ψ
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Parameter estimation

Taking partial derivatives of log-likelihood with respect to Σ yields

Σ =
(Y −M)R−1

φ (Y −M)>

T
.

Taking partial derivatives of log-likelihood with respect to µk yields

µk =
(
M(Y ;λ)−

K∑
k′=0
k′ 6=k

µk ′m
>
k ′

)
R−1

φ mk

(
m>k R−1

φ mk

)−1

I this system of K + 1 equations can be solved for µk , k = 0,1, . . . ,K
Analytical expressions for other parameters (φ, λ) unavailable

I plug the expressions for µ0,µ1, . . . ,µK ,Σ into log-likelihood
I maximize log-likelihood numerically to find estimates for φ and λ
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Multisubject studies

one variable, N subjects (rows) , T times (columns)
Log-likelihood function:

logL(Y ;M ,Σ,Ψ, λ) = −NT
2

log(2π)− T
2

log |Σ| − N
2

log |Ψ|

− 1
2

tr
{
Σ−1(M(Y ;λ)−M)Ψ−1(M(Y ;λ)−M)>

}
+ λ1>N Y 1T

Note that mean matrix M has NT parameters
I N can be very large

Often explanatory variables are available and M can be modeled
as M = XB

I X is N × q design matrix
I B is q × T matrix of linear model coefficients
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Change point modeling

For K shift change points at times t1, t2, . . . , tK , B can be written as

B =
(
β0,β0, . . . ,β0,β1︸ ︷︷ ︸

t1

,β1, . . . ,β1,β2︸ ︷︷ ︸
t2−t1

, . . . ,

βK−1, . . . ,βK−1,βK︸ ︷︷ ︸
tK−tK−1

,βK , . . . ,βK︸ ︷︷ ︸
T−tK

)

=
K∑

k=0

βkb>k

I βk is a vector of linear model coefficients of length q that
corresponds to k th process

I bk is a vector of length T that consists of 0’s and 1’s, with 1’s at
positions corresponding to the k th process
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Modeling covariance matrices

N × N matrix Σ can be a problem if N is large
Specific choice of Σ depends on a particular application
We illustrate further model development in random effect setting
Then, covariance matrix Σ is given by Σ = σ2diag {V 1, . . . ,V M}
with

V m =


η + 1 η . . . η
η η + 1 . . . η
. . . . . . . . . . . .
η η . . . η + 1


nm×nm

I m - block number, m = 1,2, . . . ,M
I nm - size of mth block
I η =

σ2
b

σ2 - ratio of between and within block variances
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Parameter estimation

To avoid inverting potentially large N × N Σ, the following
expressions can be obtained

|Σ| = σ2N |DM(V )| = σ2N(nη + 1)M

Σ−1 =
1

σ2(ηn + 1)

(
η
(

nIN −DN(1n1>n )
)
+ IN

)
I DM(V ) is block-diagonal matrix, consisting of M blocks V
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Parameter estimation
Taking partial derivatives of log-likelihood with respect to βk yields

βk =
(

X>D−1
M (V )X

)−1
X>D−1

M (V )

×

M(Y ;λ)− X
K∑

k′=0
k′ 6=k

βk ′b
>
k ′

R−1
φ bk

(
b>k R−1

φ bk

)−1

I this system of K + 1 equations can be solved for βk , k = 0,1, . . . ,K
Taking partial derivatives of log-likelihood with respect to σ2 yields

σ2 =
tr
{
D−1

M (V )(M(Y ;λ)− XB)R−1
φ (M(Y ;λ)− XB)>

}
TN

Analytical expressions for other parameters (η, φ, λ) unavailable
Plug β0,β1, . . . ,βK and σ2 into log-likelihood and numerically
optimize it for η, φ, λ
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Simulation study in multivariate setting

Assume p-variate observations observed over T time points
Simulated datasets with p = 3, and T = 100

I µ0 = (1,1.2,−2.3)>
I µ1 = (1.2,1.7,−2.2)>
I µ2 = (1.1,1.5,−2.0)>
I λ = (3,2,−0.5)>
I φ = 0.1,0.5,0.9

I Σ = 1
3

 0.4 −0.1 0.0
−0.1 0.2 −0.1
0.0 −0.1 0.1


I Σ,Σ/2,Σ/4

Competitors (available through ECP R package):
I probabilistic pruning with Energy statistic as goodness-of-fit

measure
I probabilistic pruning with Kolmogorov-Smirnov statistic as

goodness-of-fit measure

Model selection based on BIC
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Simulation study
Simulated datasets

I challenging settings
I first change point is easier to detect
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Simulation study
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Simulation study

Two change points at t1 = 10, and t2 = 20
I First two processes are relatively short compared to the third one

K = 2 Σ Σ/2 Σ/4
t1 = 10, t2 = 20 Method Energy KS Method Energy KS Method Energy KS

φ
=

0.
1

{t1, t2} 0.061 0 0.024 0.353 0 0.020 0.660 0.036 0.044
{t1, t2, x} 0 0 0 0 0 0 0 0.016 0
{t1, t̃2}/{t̃1, t2} 0.236 0 0.116 0.326 0.004 0.148 0.277 0.028 0.224
{t1}/{t2} 0.577 0 0.04 0.213 0 0.056 0.016 0.012 0.064
{t1, !t2}/{!t1, t2} 0.126 0.024 0.024 0.108 0.080 0.016 0.047 0.192 0.028

φ
=

0.
5

{t1, t2} 0.032 0 0 0.194 0 0.016 0.600 0.020 0.028
{t1, t2, x} 0 0 0 0 0 0 0 0.008 0.004
{t1, t̃2}/{t̃1, t2} 0.101 0 0.076 0.166 0 0.092 0.185 0.012 0.132
{t1}/{t2} 0.734 0 0.032 0.479 0 0.092 0.128 0.004 0.132
{t1, !t2}/{!t1, t2} 0.133 0.020 0.016 0.161 0.060 0.024 0.087 0.176 0.020

φ
=

0.
9

{t1, t2} 0.148 0.004 0.004 0.492 0.028 0.012 0.932 0.356 0.024
{t1, t2, x} 0 0.004 0 0 0.008 0 0 0.044 0.004
{t1, t̃2}/{t̃1, t2} 0.012 0 0.044 0.016 0.004 0.052 0 0.016 0.076
{t1}/{t2} 0.692 0 0.020 0.424 0.004 0.040 0.040 0.068 0.060
{t1, !t2}/{!t1, t2} 0.136 0.120 0.032 0.068 0.188 0.048 0.028 0.148 0.060
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Simulation study

Two change points at t1 = 10, and t2 = 50
I First process is relatively short compared to the other two

K = 2 Σ Σ/2 Σ/4
t1 = 10, t2 = 50 Method Energy KS Method Energy KS Method Energy KS

φ
=

0.
1

{t1, t2} 0.230 0 0 0.392 0 0 0.661 0.008 0.008
{t1, t2, x} 0 0 0 0 0.004 0 0 0.008 0
{t1, t̃2}/{t̃1, t2} 0.383 0 0 0.446 0 0.004 0.307 0 0.012
{t1}/{t2} 0.068 0.068 0.036 0 0.128 0.056 0 0.296 0.060
{t1, !t2}/{!t1, t2} 0.319 0.012 0.104 0.162 0.052 0.112 0.031 0.084 0.176

φ
=

0.
5

{t1, t2} 0.117 0 0 0.332 0 0.004 0.629 0.004 0.004
{t1, t2, x} 0 0 0 0 0.004 0 0 0 0
{t1, t̃2}/{t̃1, t2} 0.170 0 0 0.230 0 0.008 0.222 0 0.004
{t1}/{t2} 0.377 0.036 0.028 0.097 0.116 0.024 0 0.284 0.068
{t1, !t2}/{!t1, t2} 0.336 0.024 0.056 0.341 0.052 0.096 0.149 0.088 0.104

φ
=

0.
9

{t1, t2} 0.216 0 0.004 0.576 0.008 0.004 0.948 0.128 0
{t1, t2, x} 0 0 0 0 0 0 0 0.064 0
{t1, t̃2}/{t̃1, t2} 0.008 0.004 0.004 0.008 0.012 0.008 0 0.012 0.016
{t1}/{t2} 0.600 0.156 0.016 0.316 0.412 0.044 0.044 0.580 0.076
{t1, !t2}/{!t1, t2} 0.168 0.076 0.064 0.100 0.088 0.096 0.008 0.152 0.136
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Simulation study - results

Proposed method outperforms competitors substantially
Best performance for φ = 0.9 and Σ/4:

I 93.2% for t1 = 10 and t2 = 20
I 94.8% for t1 = 10 and t2 = 50

Nearly always identifies at least one change point correctly
No tendency to overestimate the number of change points

I BIC assumes large penalty for extra parameters

Results are better in all cases when t2 = 50
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Illustration: crime rates in two US cities

Crime rates obtained at the US Department of Justice, FBI
web-site (http://www.ucrdatatool.gov/Search/Crime/Crime.cfm)
Two categories of crime:

I Violent crime
F Murder, Rape, Robbery, and Aggravated Assault

I Property crime
F Burglary, Larceny, and Moto-Vehicle Theft

13-year time period (2000-2012)
Consider Austin and Cincinnati
Assume all permutations of processes
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Illustration: crime rates in Austin

Austin Violent Rate
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Illustration: crime rates in Cincinnati

Cincinnati Violent Rate
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Application: effect of Amendment 64 in Colorado

The same seven crime variables are considered
For Colorado, we found data for 10-year period: 2007 to 2016
Amendment 64: legalization of marijuana

I added to Colorado constitution in 2012
I first official sellers appeared in January, 2014

Goal: compare crimes in 2007-2013 versus those in 2014-2016
I study crime variables
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Application: effect of Amendment 64 in Colorado
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Application: effect of Amendment 64 in Colorado

BIC of model without change point in 2014 is -996.2
BIC of model with change point in 2014 is -1,006.1
Likelihood ratio test yields p-value 1.47× 10−6

Considered all combinations of variables to detect one leading to
the most significant change point

I Rape, Burglary, and Murder
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Application: Burglary rates for 125 cities in the US

Burglary rates are studied
13-year time period (2000-2012)
US regions: West, MidWest, NorthEast, SouthWest, SouthEast

Selected 25 most populated cities in each region
I N = 125, M = 5, n = 25, and T = 13

Multisubject setting
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Application: Burglary rates for 125 cities in the US

Change point is found for Burglary in 2012

β̂0 β̂1 η̂ λ̂ σ̂2 φ̂

(5.70, 7.19, 5.77, 6.93, 8.28)> (5.97, 6.99, 5.48, 6.52, 7.81)> 0.010 −0.778 0.034 0.967

In 2012, decrease in Burglary rates observed in all regions except
West
φ̂ high, σ̂2 low - according to simulation studies, change point
estimation is rather accurate in such cases
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Discussion and future work

Novel approach to robust change point analysis proposed
Capable of incorporating various dependence structures for

I observations
I subjects
I variables

Generalization: multisubject multivariate processes over time
i.e., N, p, T

I requires tensors instead of matrices

R package under development
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