On Robust Estimation of Multiple Change Points in Multivariate Processes

Yana Melnykov

Joint work with M. Perry and V. Melnykov

October 5, 2017

Yana Melnykov (University of Alabama)

October 5, 2017 1 / 33

Talk outline

- Introduction and notation
- Motivation
- Methodology
- Experiments on simulated data
- Applications
- Discussion and future work

Introduction and notation

- Objective of change point estimation: identifying changes in processes observed over given time interval
- Simplest change point setting:
 - data observed over T time points
 - ► K + 1 processes: (0), (1), ..., (K)
 - *K* change points at times t_1, t_2, \ldots, t_K
 - dataset

$$\mathbf{Y}_{1}^{(0)}, \, \mathbf{Y}_{2}^{(0)}, \dots, \, \mathbf{Y}_{t_{1}-1}^{(0)}, \, \mathbf{Y}_{t_{1}}^{(1)}, \, \mathbf{Y}_{t_{1}+1}^{(1)}, \dots, \, \mathbf{Y}_{t_{K}-1}^{(K-1)}, \, \mathbf{Y}_{t_{K}}^{(K)}, \, \mathbf{Y}_{t_{K}+1}^{(K)}, \dots, \, \mathbf{Y}_{T}^{(K)}$$

Motivation

- The majority of methods
 - focus of univariate settings
 - assume processes following normal distribution
 - ★ or *p*-variate normal distribution in multivariate setting
 - assume independence of observations observed over time
 - focus on single subject
 - * or assume independence of subjects in multisubject studies
- We aim at developing procedures that
 - relax distributional assumptions (robust to deviations from normality)
 - are capable to handle multivariate processes
 - take into account dependence among observations
 - take into account dependence among variables
 - take into account dependence among subjects in multisubject studies
 - model joint covariance structure for variables, subjects, and observations

Matrix normal distribution

 Consider a generalization of *p*-variate normal to *p* × *T* matrix normal distribution (see, *e.g.*, Gupta and Nagar (2000)) with pdf

$$\begin{split} \phi_{\boldsymbol{\rho}\times\boldsymbol{\mathcal{T}}}(\boldsymbol{\boldsymbol{Y}};\boldsymbol{\boldsymbol{M}},\boldsymbol{\boldsymbol{\Sigma}},\boldsymbol{\Psi}) &= (2\pi)^{-\frac{\boldsymbol{\rho}\boldsymbol{\mathcal{T}}}{2}} |\boldsymbol{\boldsymbol{\Sigma}}|^{-\frac{\boldsymbol{\mathcal{T}}}{2}} |\boldsymbol{\Psi}|^{-\frac{\boldsymbol{\rho}}{2}} \\ &\times \exp\left\{-\frac{1}{2} \mathrm{tr}\left\{\boldsymbol{\boldsymbol{\Sigma}}^{-1}(\boldsymbol{\boldsymbol{Y}}-\boldsymbol{\boldsymbol{M}})\boldsymbol{\Psi}^{-1}(\boldsymbol{\boldsymbol{Y}}-\boldsymbol{\boldsymbol{M}})^{\top}\right\}\right\} \end{split}$$

- **Y** is $p \times T$ matrix of data
- **M** is $p \times T$ mean matrix
- Σ_{p×p} and Ψ_{T×T} are covariance matrices associated with rows and columns, respectively
- tr{·} represents the trace operator
- Matrix normal distribution is effective in modeling variability associated with rows and columns

Matrix normal distribution

- It can be shown that $\operatorname{vec}(\mathbf{Y}) \sim \phi_{pT}(\operatorname{vec}(\mathbf{M}), \mathbf{\Psi} \otimes \mathbf{\Sigma})$
 - i.e., rows and columns are not assumed independent
- Taking into account matrix structure of data allows reducing the number of parameters associated with covariances from pT(pT+1)/2 to T(T+1)/2 + p(p+1)/2
- Note that $\Psi \otimes \mathbf{\Sigma} = a \Psi \otimes a^{-1} \mathbf{\Sigma}$, for any $a \in (0, \infty)$
 - to avoid non-identifiability, a constraint should be employed

Dealing with deviations from normality

- Data are often skewed normality assumption is violated
- Possible remedies include
 - tranforming data to near-normality (e.g., Box-Cox power or Manly exponential transformations)
 - employing more appropriate models (e.g., skew-normal, log-normal, gamma, etc.)
- Manly transformation (1986) has several advantages over Box-Cox
 - not restricted to positive numbers
 - flexible for modeling left and right skewness
 - $\mathcal{M}(y;\lambda) = \lambda^{-1}(\exp(\lambda y) 1)I(\lambda \neq 0) + yI(\lambda = 0)$
 - ★ y: original observation
 - * $\mathcal{M}(\cdot; \lambda)$: transformation operator with parameter λ
 - ★ I(A): indicator function that returns 1 if A is true and yields 0 otherwise

Multivariate Manly transformation

- For *p*-variate vector **y**, it is commonly assumed that coordinatewise transformation leads to joint near-normality (*e.g.*, Andrews et al (1971), Velilla (1993))
 - $\mathcal{M}(\boldsymbol{y};\boldsymbol{\lambda}) = (\mathcal{M}(\boldsymbol{y}_1;\boldsymbol{\lambda}_1), \mathcal{M}(\boldsymbol{y}_2;\boldsymbol{\lambda}_2), \dots, \mathcal{M}(\boldsymbol{y}_p;\boldsymbol{\lambda}_p))^\top \sim Normal(\boldsymbol{\mu},\boldsymbol{\Sigma})$ $\star \boldsymbol{y} = (\boldsymbol{y}_1, \boldsymbol{y}_2, \dots, \boldsymbol{y}_p)^\top$ $\star \boldsymbol{\lambda} = (\boldsymbol{\lambda}_1, \boldsymbol{\lambda}_2, \dots, \boldsymbol{\lambda}_p)^\top$
- This transformation idea can be generalized to matrices
 - $\mathcal{M}(\mathbf{Y}, \mathbf{\Lambda}) \sim MatrixNormal(\mathbf{M}, \mathbf{\Sigma}, \mathbf{\Psi})$
 - specific form of A depends on the problem
 - ★ if rows represent p variables and columns correspond to T times, each variable can have its own skewness parameter, *i.e.*, $\Lambda = \lambda_p \mathbf{1}_T^T$
 - * if rows represent *N* subjects and columns correspond to *T* times, common parameter λ need to be applied to all rows, *i.e.*, $\mathbf{\Lambda} = \lambda \mathbf{1}_N \mathbf{1}_T^T$

Multivariate processes

- p variables, T times
- Log-likelihood function:

$$\begin{split} \log \mathcal{L}(\boldsymbol{Y}; \boldsymbol{M}, \boldsymbol{\Sigma}, \boldsymbol{\Psi}, \boldsymbol{\lambda}) &= -\frac{pT}{2} \log(2\pi) - \frac{T}{2} \log|\boldsymbol{\Sigma}| - \frac{p}{2} \log|\boldsymbol{\Psi}| \\ &- \frac{1}{2} \text{tr} \left\{ \boldsymbol{\Sigma}^{-1} (\mathcal{M}(\boldsymbol{Y}; \boldsymbol{\lambda}) - \boldsymbol{M}) \boldsymbol{\Psi}^{-1} (\mathcal{M}(\boldsymbol{Y}; \boldsymbol{\lambda}) - \boldsymbol{M})^{\top} \right\} \\ &+ \boldsymbol{\lambda}^{\top} \boldsymbol{Y} \boldsymbol{1}_{T} \end{split}$$

• $\lambda^{\top} \mathbf{Y} \mathbf{1}_{T}$ is the log of Jacobian corresponding to transformation

Modeling mean matrix

- Note that mean matrix **M** has *pT* parameters
- In case of K shift change points

$$\boldsymbol{M} = \left(\underbrace{\boldsymbol{\mu}_{0}, \boldsymbol{\mu}_{0}, \dots, \boldsymbol{\mu}_{0}, \boldsymbol{\mu}_{1}}_{t_{1}}, \underbrace{\boldsymbol{\mu}_{1}, \dots, \boldsymbol{\mu}_{1}, \boldsymbol{\mu}_{2}}_{t_{2}-t_{1}}, \dots, \underbrace{\boldsymbol{\mu}_{K-1}, \dots, \boldsymbol{\mu}_{K-1}, \boldsymbol{\mu}_{K}}_{t_{K}-t_{K-1}}, \underbrace{\boldsymbol{\mu}_{K}, \dots, \boldsymbol{\mu}_{K}}_{T-t_{K}}\right) = \sum_{k=0}^{K} \boldsymbol{\mu}_{k} \boldsymbol{m}_{k}^{\mathsf{T}}$$

m_k is vector of 0's and 1's, with 1's in positions corresponding to the *kth* process

Modeling covariance matrices

- Choice of Ψ depends on specific problem
- Matrix Ψ corresponding to AR₁ process is given by

$$\Psi = \frac{\delta^2}{1 - \phi^2} R_{\phi} \quad \text{with} \quad R_{\phi} = \begin{pmatrix} 1 & \phi & \phi^2 & \dots & \phi^{T-1} \\ \phi & 1 & \phi & \dots & \phi^{T-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \phi^{T-1} & \phi^{T-2} & \phi^{T-3} & \dots & 1 \end{pmatrix}$$

- δ^2 and ϕ are corresponding variance and AR_1 parameters
- *R*_{\u03c6} represents the correlation matrix associated with *AR*₁
- Recall non-identifiability issue due to $a\Psi \otimes a^{-1}\Sigma = \Psi \otimes \Sigma$
- One convenient constraint in the considered setting is $\delta^2 = 1 \phi^2$
 - Ψ reduces to correlation matrix \boldsymbol{R}_{ϕ}

Modeling covariance matrices

• It can be shown that

$$|\Psi| = |\mathbf{R}_{\phi}| = (1 - \phi^2)^{T-1}$$

$$\Psi^{-1} = \mathbf{R}_{\phi}^{-1} = \frac{1}{1 - \phi^2} (\mathbf{I}_T - \phi \mathbf{J}_1 + \phi^2 \mathbf{J}_2)$$

$$\mathbf{J}_1 = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 & 0 \\ 1 & 0 & 1 & \dots & 0 & 0 \\ 0 & 1 & 0 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 0 & 1 \\ 0 & 0 & 0 & \dots & 1 & 0 \end{pmatrix} \quad \mathbf{J}_2 = \begin{pmatrix} 0 & 0 & 0 & \dots & 0 & 0 \\ 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 \end{pmatrix}$$

• This helps completely avoid inverting potentially high-dimensional $\mathcal{T} \times \mathcal{T}$ matrix Ψ

Parameter estimation

Taking partial derivatives of log-likelihood with respect to Σ yields

$$\boldsymbol{\Sigma} = \frac{(\boldsymbol{Y} - \boldsymbol{M})\boldsymbol{R}_{\phi}^{-1}(\boldsymbol{Y} - \boldsymbol{M})^{\top}}{T}$$

$$\boldsymbol{\mu}_{k} = \left(\mathcal{M}(\boldsymbol{Y}; \boldsymbol{\lambda}) - \sum_{\substack{k'=0\\k' \neq k}}^{K} \boldsymbol{\mu}_{k'} \boldsymbol{m}_{k'}^{\top} \right) \boldsymbol{R}_{\phi}^{-1} \boldsymbol{m}_{k} \left(\boldsymbol{m}_{k}^{\top} \boldsymbol{R}_{\phi}^{-1} \boldsymbol{m}_{k} \right)^{-1}$$

▶ this system of K + 1 equations can be solved for μ_k , k = 0, 1, ..., K

Analytical expressions for other parameters (φ, λ) unavailable

- ▶ plug the expressions for $\mu_0, \mu_1, \dots, \mu_K, \Sigma$ into log-likelihood
- maximize log-likelihood numerically to find estimates for ϕ and λ

Multisubject studies

- one variable, N subjects (rows), T times (columns)
- Log-likelihood function:

$$\begin{split} \log \mathcal{L}(\mathbf{Y}; \mathbf{M}, \mathbf{\Sigma}, \mathbf{\Psi}, \lambda) &= -\frac{NT}{2} \log(2\pi) - \frac{T}{2} \log|\mathbf{\Sigma}| - \frac{N}{2} \log|\mathbf{\Psi}| \\ &- \frac{1}{2} \text{tr} \left\{ \mathbf{\Sigma}^{-1} (\mathcal{M}(\mathbf{Y}; \lambda) - \mathbf{M}) \mathbf{\Psi}^{-1} (\mathcal{M}(\mathbf{Y}; \lambda) - \mathbf{M})^{\top} \right\} \\ &+ \lambda \mathbf{1}_{N}^{\top} \mathbf{Y} \mathbf{1}_{T} \end{split}$$

- Note that mean matrix **M** has NT parameters
 - N can be very large
- Often explanatory variables are available and *M* can be modeled as *M* = *XB*
 - ► X is N × q design matrix
 - **B** is $q \times T$ matrix of linear model coefficients

Change point modeling

• For *K* shift change points at times t_1, t_2, \ldots, t_K , **B** can be written as

$$\boldsymbol{B} = \left(\underbrace{\beta_0, \beta_0, \dots, \beta_0, \beta_1}_{t_1}, \underbrace{\beta_1, \dots, \beta_1, \beta_2}_{t_2 - t_1}, \dots, \underbrace{\beta_{K-1}, \dots, \beta_{K-1}, \beta_K}_{t_K - t_{K-1}}, \underbrace{\beta_K, \dots, \beta_K}_{T - t_K}\right)$$
$$= \sum_{k=0}^{K} \beta_k \boldsymbol{b}_k^{\top}$$

- β_k is a vector of linear model coefficients of length q that corresponds to kth process
- **b**_k is a vector of length *T* that consists of 0's and 1's, with 1's at positions corresponding to the kth process

Modeling covariance matrices

- $N \times N$ matrix Σ can be a problem if N is large
- Specific choice of Σ depends on a particular application
- We illustrate further model development in random effect setting
- Then, covariance matrix Σ is given by Σ = σ²diag {V₁,..., V_M} with

$$\boldsymbol{V}_{m} = \begin{bmatrix} \eta + 1 & \eta & \dots & \eta \\ \eta & \eta + 1 & \dots & \eta \\ \dots & \dots & \dots & \dots \\ \eta & \eta & \dots & \eta + 1 \end{bmatrix}_{n_{m} \times n_{m}}$$

- m block number, $m = 1, 2, \ldots, M$
- n_m size of m^{th} block
- $\eta = \frac{\sigma_b^2}{\sigma^2}$ ratio of between and within block variances

Parameter estimation

 To avoid inverting potentially large N × N Σ, the following expressions can be obtained

$$\begin{aligned} |\mathbf{\Sigma}| &= \sigma^{2N} |\mathcal{D}_M(\mathbf{V})| = \sigma^{2N} (n\eta + 1)^M \\ \mathbf{\Sigma}^{-1} &= \frac{1}{\sigma^2 (\eta n + 1)} \left(\eta \left(n \mathbf{I}_N - \mathcal{D}_N (\mathbf{1}_n \mathbf{1}_n^\top) \right) + \mathbf{I}_N \right) \end{aligned}$$

• $\mathcal{D}_M(V)$ is block-diagonal matrix, consisting of *M* blocks *V*

Parameter estimation

Taking partial derivatives of log-likelihood with respect to β_k yields

$$\beta_{k} = \left(\boldsymbol{X}^{\top} \mathcal{D}_{M}^{-1}(\boldsymbol{V}) \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top} \mathcal{D}_{M}^{-1}(\boldsymbol{V})$$
$$\times \left(\mathcal{M}(\boldsymbol{Y}; \lambda) - \boldsymbol{X} \sum_{k'=0 \atop k' \neq k}^{K} \beta_{k'} \boldsymbol{b}_{k'}^{\top}\right) \boldsymbol{R}_{\phi}^{-1} \boldsymbol{b}_{k} \left(\boldsymbol{b}_{k}^{\top} \boldsymbol{R}_{\phi}^{-1} \boldsymbol{b}_{k}\right)^{-1}$$

this system of K + 1 equations can be solved for β_k, k = 0, 1,..., K
 Taking partial derivatives of log-likelihood with respect to σ² yields

$$\sigma^{2} = \frac{\operatorname{tr}\left\{\mathcal{D}_{M}^{-1}(\boldsymbol{V})(\mathcal{M}(\boldsymbol{Y};\lambda) - \boldsymbol{X}\boldsymbol{B})\boldsymbol{R}_{\phi}^{-1}(\mathcal{M}(\boldsymbol{Y};\lambda) - \boldsymbol{X}\boldsymbol{B})^{\top}\right\}}{TN}$$

Analytical expressions for other parameters (η, φ, λ) unavailable
 Plug β₀, β₁,..., β_K and σ² into log-likelihood and numerically optimize it for η, φ, λ

Simulation study in multivariate setting

- Assume *p*-variate observations observed over *T* time points
- Simulated datasets with p = 3, and T = 100

$$\mu_0 = (1, 1.2, -2.3)^\top
 \mu_1 = (1.2, 1.7, -2.2)^\top
 \mu_2 = (1.1, 1.5, -2.0)^\top
 \lambda = (3, 2, -0.5)^\top
 \phi = 0.1, 0.5, 0.9
 \Sigma = \frac{1}{3} \begin{bmatrix} 0.4 & -0.1 & 0.0 \\ -0.1 & 0.2 & -0.1 \\ 0.0 & -0.1 & 0.1 \end{bmatrix}$$

$$\Sigma, \Sigma/2, \Sigma/4$$

- Competitors (available through ECP R package):
 - probabilistic pruning with Energy statistic as goodness-of-fit measure
 - probabilistic pruning with Kolmogorov-Smirnov statistic as goodness-of-fit measure
- Model selection based on BIC

- Simulated datasets
 - challenging settings
 - first change point is easier to detect

- Two change points at $t_1 = 10$, and $t_2 = 20$
 - First two processes are relatively short compared to the third one

K = 2		Σ		Σ/2			Σ/4			
$t_1 = 10, t_2 = 20$		Method	Energy	KS	Method	Energy	KS	Method	Energy	KS
$\phi = 0.1$	$\{t_1, t_2\}$	0.061	0	0.024	0.353	0	0.020	0.660	0.036	0.044
	$\{t_1, t_2, x\}$	0	0	0	0	0	0	0	0.016	0
	$\{t_1, \tilde{t}_2\} / \{\tilde{t}_1, t_2\}$	0.236	0	0.116	0.326	0.004	0.148	0.277	0.028	0.224
	$\{t_1\}/\{t_2\}$	0.577	0	0.04	0.213	0	0.056	0.016	0.012	0.064
	$\{t_1, !t_2\}/\{!t_1, t_2\}$	0.126	0.024	0.024	0.108	0.080	0.016	0.047	0.192	0.028
$\phi = 0.5$	$\{t_1, t_2\}$	0.032	0	0	0.194	0	0.016	0.600	0.020	0.028
	$\{t_1, t_2, x\}$	0	0	0	0	0	0	0	0.008	0.004
	$\{t_1, \tilde{t}_2\} / \{\tilde{t}_1, t_2\}$	0.101	0	0.076	0.166	0	0.092	0.185	0.012	0.132
	$\{t_1\}/\{t_2\}$	0.734	0	0.032	0.479	0	0.092	0.128	0.004	0.132
	$\{t_1, !t_2\}/\{!t_1, t_2\}$	0.133	0.020	0.016	0.161	0.060	0.024	0.087	0.176	0.020
$\phi = 0.9$	$\{t_1, t_2\}$	0.148	0.004	0.004	0.492	0.028	0.012	0.932	0.356	0.024
	$\{t_1, t_2, x\}$	0	0.004	0	0	0.008	0	0	0.044	0.004
	$\{t_1, \tilde{t}_2\} / \{\tilde{t}_1, t_2\}$	0.012	0	0.044	0.016	0.004	0.052	0	0.016	0.076
	$\{t_1\}/\{t_2\}$	0.692	0	0.020	0.424	0.004	0.040	0.040	0.068	0.060
	$\{t_1, !t_2\}/\{!t_1, t_2\}$	0.136	0.120	0.032	0.068	0.188	0.048	0.028	0.148	0.060

- Two change points at $t_1 = 10$, and $t_2 = 50$
 - First process is relatively short compared to the other two

K = 2		Σ		Σ/2			Σ/4			
$t_1 = 10, t_2 = 50$		Method	Energy	KS	Method	Energy	KS	Method	Energy	KS
$\phi = 0.1$	$\{t_1, t_2\}$	0.230	0	0	0.392	0	0	0.661	0.008	0.008
	$\{t_1, t_2, x\}$	0	0	0	0	0.004	0	0	0.008	0
	$\{t_1, \tilde{t}_2\}/\{\tilde{t}_1, t_2\}$	0.383	0	0	0.446	0	0.004	0.307	0	0.012
	$\{t_1\}/\{t_2\}$	0.068	0.068	0.036	0	0.128	0.056	0	0.296	0.060
	$\{t_1, !t_2\}/\{!t_1, t_2\}$	0.319	0.012	0.104	0.162	0.052	0.112	0.031	0.084	0.176
$\phi = 0.5$	$\{t_1, t_2\}$	0.117	0	0	0.332	0	0.004	0.629	0.004	0.004
	$\{t_1, t_2, x\}$	0	0	0	0	0.004	0	0	0	0
	$\{t_1, \tilde{t}_2\}/\{\tilde{t}_1, t_2\}$	0.170	0	0	0.230	0	0.008	0.222	0	0.004
	$\{t_1\}/\{t_2\}$	0.377	0.036	0.028	0.097	0.116	0.024	0	0.284	0.068
	$\{t_1, !t_2\}/\{!t_1, t_2\}$	0.336	0.024	0.056	0.341	0.052	0.096	0.149	0.088	0.104
$\phi = 0.9$	$\{t_1, t_2\}$	0.216	0	0.004	0.576	0.008	0.004	0.948	0.128	0
	$\{t_1, t_2, x\}$	0	0	0	0	0	0	0	0.064	0
	$\{t_1, \tilde{t}_2\} / \{\tilde{t}_1, t_2\}$	0.008	0.004	0.004	0.008	0.012	0.008	0	0.012	0.016
	$\{t_1\}/\{t_2\}$	0.600	0.156	0.016	0.316	0.412	0.044	0.044	0.580	0.076
	$\{t_1, t_2\}/\{t_1, t_2\}$	0.168	0.076	0.064	0.100	0.088	0.096	0.008	0.152	0.136

Simulation study - results

- Proposed method outperforms competitors substantially
- Best performance for $\phi = 0.9$ and $\Sigma/4$:
 - 93.2% for $t_1 = 10$ and $t_2 = 20$
 - 94.8% for $t_1 = 10$ and $t_2 = 50$
- Nearly always identifies at least one change point correctly
- No tendency to overestimate the number of change points
 - BIC assumes large penalty for extra parameters
- Results are better in all cases when $t_2 = 50$

Illustration: crime rates in two US cities

- Crime rates obtained at the US Department of Justice, FBI web-site (http://www.ucrdatatool.gov/Search/Crime/Crime.cfm)
- Two categories of crime:
 - Violent crime
 - Murder, Rape, Robbery, and Aggravated Assault
 - Property crime
 - * Burglary, Larceny, and Moto-Vehicle Theft
- 13-year time period (2000-2012)
- Consider Austin and Cincinnati
- Assume all permutations of processes

Illustration: crime rates in Austin

Austin Property Rate

Solution is driven by Violent crimes primarily

Illustration: crime rates in Cincinnati

Cincinnati Property Rate

Solution is driven by Property crimes primarily

Application: effect of Amendment 64 in Colorado

- The same seven crime variables are considered
- For Colorado, we found data for 10-year period: 2007 to 2016
- Amendment 64: legalization of marijuana
 - added to Colorado constitution in 2012
 - first official sellers appeared in January, 2014
- Goal: compare crimes in 2007-2013 versus those in 2014-2016
 - study crime variables

Application: effect of Amendment 64 in Colorado

Application: effect of Amendment 64 in Colorado

- BIC of model without change point in 2014 is -996.2
- BIC of model with change point in 2014 is -1,006.1
- Likelihood ratio test yields p-value 1.47×10^{-6}
- Considered all combinations of variables to detect one leading to the most significant change point
 - Rape, Burglary, and Murder

Application: Burglary rates for 125 cities in the US

- Burglary rates are studied
- 13-year time period (2000-2012)
- US regions: West, MidWest, NorthEast, SouthWest, SouthEast

Selected 25 most populated cities in each region

- ▶ *N* = 125, *M* = 5, *n* = 25, and *T* = 13
- Multisubject setting

Application: Burglary rates for 125 cities in the US

• Change point is found for Burglary in 2012

$\hat{\boldsymbol{\beta}}_0$	$\hat{oldsymbol{eta}}_1$	$\hat{\eta}$	$\hat{\lambda}$	$\hat{\sigma}^2$	$\hat{\phi}$
(5.70, 7.19, 5.77, 6.93, 8.28) [⊤]	$(5.97, 6.99, 5.48, 6.52, 7.81)^{ op}$	0.010	-0.778	0.034	0.967

- In 2012, decrease in Burglary rates observed in all regions except West
- $\hat{\phi}$ high, $\hat{\sigma}^2$ low according to simulation studies, change point estimation is rather accurate in such cases

Discussion and future work

- Novel approach to robust change point analysis proposed
- Capable of incorporating various dependence structures for
 - observations
 - subjects
 - variables
- Generalization: multisubject multivariate processes over time *i.e.*, *N*, *p*, *T*
 - requires tensors instead of matrices
- R package under development